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Fractal Immage Compression Using Iterated Transforms:
Applications to DTED
F.W. Jacobs and R.D. Boss
NCCOSC RDT&E Div
Code 573, San Diego, CA 92152-5000

ABSTRACT: A review of iterated transformation
image compression is presented. Generalization of sun-
ple iterated function system fractal generating algorithms
to an automated iterated transformation algorithm used
to compress greyscale images is reviewed. Compressed
images from the Digital Terrain Elevation Database are
presented, and compared with encodings using adaptive
discrete cosine transformations, and mean residual vector

quantization image compression techniques.
1. INTRODUCTION

Because of the increasing use of digital imagery, there
is currently considerable interest in the image compres-
sion problem. In particular, image compression is a cur-
tent and growing necessity for Navy applications includ-
ing storage and transmittal of maps, intelligence pho-
tographs, weather information, etc. General interest in
image compression has led to the establishment by the
Joint Photographic Experts Group of a standard based
on discrete cosine transforms (ADCT). There is also an
on going efiort in the research community to design im-
proved vector quantization (VQ) methods, and to develop
methods which utilize wavelet trausformations. A rela-
tively new approach to the image compression problem,
iterated transformations, has been presented by Jacquin
[1,2]. This method has ite foundation in the theory of iter-
ated function systems (IFSs), developed by Hutchinson {3]
and Barnsley [4], and recurrent iterated function systems
[5]. The iterated transform algorithm has received partic-
ular interest because of the fractal nature of the encoded
images, and because there has been much speculation,
but little information available on the capabilities of the
method. The first sections of this paper review the basic
methodology of the iterated transform image compression
technique. This is followed by a section on the compres-
sion of the Digital Terrain Elevation Database {(DTED)
in which results obtained using iterated #=ansformations
are compared to ADCT and VQ methods.

48.2.1

2. BACKGROUND: SIMPLE EXAMPLES

This example serves as a simple illustration of some con-
cepts involved in the iterated transform tmage-encoding
scheme. This example is based on iterated function sys-
tems. The main concept is that the image of a set (a
Sierpinski gasket, in this case) can be reconstructed from
a set of transformations which may take less memory to

store than the original image.

Consider the three transformations shown in figure 1.

They are
dHNHHIHEN]
< 1=le 401
and
=[3 =18 3G )AL

For any set S, let

3
w(S) = |J wi($).

=1
Denote the n-fold composition of W with itself as We".
Define A, = W(An,_1) = W°?(Ap) and arbitrarily choose
Ao as the unit square with lower left corner at the origin
(ie., Ao = {(z, 9]0 € £ <€ 1,0 € y < 1}). Then as
n — 00, the set A, converges to a limit set A. In fact,
for any compact set S C R?, W°™(S) — Ao as n — oc.
Figure 2 shows Ag, Ay, A, A3, Aq, As and A

That all compact initial sets converge under iteration
to Ao is important—it means that the set A, is defined
by the w; only.

Each w; is determined by 6 real values, so that for this
example 18 floating point numbers are required. In single
precision, this requires 72 bytes. The memory required to
store an image of the set depends on the resolution; the
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Figure 1. Three affine transformations in the plane.
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Figute 2. AQ,AK.AhAJ,A('AG, and Aom

Ax image requires 256 x 256 x 1 bit = 8192 bytes of
memory. The resulting compression ratio in this example
is 1138: 1,

It is inherently difficult to find an IFS which will encode
an arbitrary set. Furthermore, in this example, the image
of the Sierpinski gasket is described by a set of pixels, each
being either black or white. The problem of more inter-
est for image compression applications is the encoding of
gray scale images (i.e., an image in which each pixel has
many possible gray levels, not just black or white). There
are two generalizations to the simple example given above
which make encoding gray scale images feasible. First, in-
stead of each wy operating on the entire image, the w; are
restricted to operate on a section of the image. The the-
ory of IFS’s has been extended by Barnsley and Jacquin
[5] to allow transforms to operate on only parts of the set
rather than the entire set, in a meihod they call rect:e-
rent iterated function systems. The particular section, or

domain, which each w; acts on must be stored as part
of the encoded image. Second, the transformations have
to be generalized to three dimensions. A gray scale im-
age can be thought of as a three-dimensional image, each
pixel having an z,y coordinate, and an intensity value z.
A form for the transformations which is convenient for
encoding gray scale images is,

z a b O z €
wilyj=|ea d 0 v+l fil (1)
z 0 0 & ? 04

Consider the sixteen transformations,

. b < d » - { ©
G5! 00 | 001081 30 |01 090 B
o8| 00 oo} o8 30 |07 033} 00
085 ) 00 |oo]os] 20 |oso]| 00 | oo
o8| 00 oo os] 20 o080} 028 00
08| 00 [oo|o0s{ 20 00 0s 00
08| 00 oo )08} 20| 00 | 078 | 00
0800 |oo}os} 20 loas| o8 0.0
08 ] 00 joo o6 20 {o2s] 078 { 00
GO0 | 08 [ 0B 00 T o ™03 60
co|-08]|os}oc]joas)]|oas) oo | o328
co| .08 ] os|o0jo2s| o8 | .025] 028

-00}-05]o0slo0fjoas| os 00 § 00
oo} .08 |os)]o0]o0o2s)o0rs] 028 00
00| -08[06)]o00]0cas}jors| o5 | 035
00| -08 |08 ] 00j0328] 10| 028 | 0.28
00] -05}08]00}fo025] 1.0 0.8 0.0

where the first eight transformations are restricted to act
on the region {(z,1)|0 < 2 <1/2,0 <y € 1/2}, and the
second eight transformations are restricted to act on the
region {(z,y)|1/2< 2 <1, 0 <y < 1/2}. Similar to the
example given above, the map W is defined as the union
of the w;'s. Let values of z = 0 be represented as black,
z = 1 as white, with intermediate values as shades of gray.
The initial image A, is ar* .trarily chosen as z = 0.5 for
{(z,9)10 € 2 £1,0 €y £ 1}. The first six iterates, and
the fixed point are shown in figure 3. In practice, the
values of z,y, and z are discretited. When the image in
this example is discretized as 128 x 128 pixels, and 8-bits
per pixel, the encoder used in this paper [8,7] automat-
ically en..odes this image (using an equivalent set of 18
transformations) with the resulting compression equal to
356:1.

3. ENCODING AND DECODING AN IMAGE

The question that must be answered is, given an im-
age, what is the method for finding transformations that

48.2.2
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Fig!l!‘e 3. Ao, A1, A2, A;, Ac,As,As, and A for the 16
transformations listed in the text.

encode it? The contractive mapping fixed point theo-
rem suggest how to answer this question. The contractive
mapping fixed point theorem guarantecs that, if F is a
complete metric space, and the map W : F — F is a2 con-
{ractive transformation, there exists a unique fixed point
W] = Ag = limp oo W*™(Ap), for any Ag € F.

Since the limit set is a fixed point,
Wl=W(W]) = wi(IW))u---Uwa(iW]).  (2)

This formula suggests how one would seek the transfor-
mations wy, ..., w, which encode a given image. The goal
is to have the fixed point W[ approximate the desired im-
age f. The transformations should therefore be cliosen to
satisfy equation 2 with {W]| replaced by f, i.e., the trans-
formations, when applied to f, should result in f. The
wi{f) ..., wa(f) are said to cover the image f. Refer-
ring back to the two examples in the previous section, it
is seen that, given the Sierpenski triangle, or the fractal
square pattern, by satisflying equation 2 the transforma-
tions encoding these images could be found.

In the two examples, the covering W(f) is exact. Given
an arbitrary set f, it is not possible in general to exactly
cover f with a finite number of transformations of itself.

48.2.3
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The obvious question s then. what happens of the cover
mg W(f) s approxaimate? A corollary of the contractive
mapping fixed point theorem, which Barnsley calls the
Collage Theorem, puts a bound on the error between W
and f when W(f} does not exactly equal f 'The theorem
says that the closer the covering #W(f) is to the original
set f. the closer the fixed point W] will be to £, and thay
this is especially troe i the transformations composing 3/

are very contractive,

fu figure 4 part of the encoding process for this image
is illustrated. The figure demonstrates how one section
of the image, called a range (#;), is covered as closely
as possible by applving a transformation w, to a domain
(1%). To complete the encoding process, a w, and D,
must be found to cover each R;, and the R;’s must com-
pletely tile the image. To facilitate compact specification
of the transformations, the sets from which D’s and '
are chosen are restricted to be geometrically simple, and
limited in number. The w;’s must be chosen such that
upon iteration, a fixed point is reached. In light of the
collage theorem, it is surprising that when the map W
is constructed, it is not necessary to impose any contrac-
tivity conditions on the individual transforms. The nec-
essary contractivity requirernent is that W be eventually
contractive {8]. A map W : F — F is eventually contrac-
tive if there exists a positive integer m such that the m*
iterate of W is contractive, Note that in the gray scale
example of section 2, half of the transformations are not

contractive in the z directjon.

As shown for the simple examples in the previous sec-
tion (figures 2 and 3), decoding an image is performed
by starting with an arbitrary initial image, and iterating
the transformations until the fixed point is reached. This
process i3 shown for an encoding of “tank farm” in fig-
ure 5. The compression of this image was 8.66:1, and the
PSNR = —20log (™55™F) = 33.6 dB.

4. APPLICATION TO DTED

Application of image compression to geographic map
data is of particular interest Lo the Navy. Geographic map
data comes in a variety of formats, and there has been ex-
tensive work done in compressing map databases for vari-

ous applications. In this section, the problem of compres-
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Figure 4. Part of the encoding process.

sion of the Digital Terrain Elevation Database {DTED)
15 addressed. The database consists of elevation data for
a grid of longitude-latitude coordinates where the grid
points are roughly 100 meters apart. A complete descrip-
tion of DTED can be obtained from the Defence Mapping
Agency. Alward and Nicholls [9] examined hierarchical
data structures as applied to DTED. The data structures
result in some data compression, although compression
was not the primary goal of that investigation. In this
section, the problem of interest is evaluating the perfor-
mance of the iterated transform (IT) method on DTED.
This would be useful for applications where data compres-
sion is the primary concern, and 1ssues such as hierarchical
structure, access time, and decoding time are of secondary

importance. As a means of evaluation, the DTED images

-

Figure 5 Initial image. first iterate, second iterate, and tenth

iterate for an encoding of the “tank farm™ nage.

were also compressed with an ADCT and mean residual
vector quantization algorithm (MRVQ) DTED data can
be thought of in terms of a gray scale tmage where the lon-
gitude and latitude identify the pixel, and the elevation is
the pixel value. For the purpose of possible Navy applica-
tion, the data were transformed from their oniginal lincar
scale between b and 10000 meters, to a logarithmic scale
between 0 and 255. The quantization results in a comptes-
sion from 14 bits per datapoint to 8 bits per datapoint.
This logarithmic scale, shown in figure 6, represents lower
elevations more accurately than higher elevations, the ra-
tionale for this being that lower elevations areas are more
likely to be important for Navy applications, and that
nearly all of the earth’s surface (particularly near coast-

lines) is al relatively low elevation.

The iterated transform algorithm was identical to that
used in reference 6 except for one significant modifica-
tion. The algorithm was modified to encode sections of the
image on coasthines with increased accuracy. For image
sections that contained conasthine. the error criteria was
tightened. This resulted in more segmentation, and there-
fore higher fidelity in these areas The ADCT algorithm
used was sirilar to that deseribed by Chen and Pratt
(10]. except for a modification simlar to that described
above for the iterated transform algorithm. To encode
coastlines maore accurately. the decision level quantizer
table was compressed for sections of the image on coast-

lines, Improving the fidelity at the coastlines resulted in a

48.2.4
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Figure 6 . The scale transformation used for the DTED data.

decrease in the overall compression-fidelity performance.
The MRVQ algorithm used was based on the method de-
scribed by Linde et al. {11]. Codebooks were generated
from 2 sections of DTED similar to (but not including)
the section tested.

The compression methods being considered are prop-
erly applied to images with a dynamic range appropriate
to the number of bits used to store the image, and a rel-
atively smooth distribution of gray level intensity values
over this range. In figure 7, the 512 x 512 section of
DTED, which is 1° east of that section shown in figure 8
is displayed where sea level is displayed in gray, all pixels
with an elevation that is a multiple of 100 (+ 2) are dis-
played in black, and all other elevations being displayed in
white. It appears that the majority of the data contained
in this section of DTED were created from 100-meter con-
tour maps, the result being that a disproportionate num-
ber of datapoints are at multiples of 100 meters. In the
southeast corner of the map, it can be seen that the num-
ber of points at 100 meters are far more dispersed. In
this section of the map, roughly the number of datapoints
that would be expected based on random elevations are
present. The biased quantization illustrated by figure 7 is
evident in other sections of DTED.

Because of this biased quantization, the reconstructed
image resulting from compressed encodings will have a
smoother distribution of pixel values than the original im-

48.2.5
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Figure 7. Pixels of value 100 £2 meters.

Table 1 . Results for encodings of igure 5.

Method | Compression | PSNR{dB) | Figure
IT 44.86:1 32.98
iT 21.49:1 35.08 9
ADCT 47.33:1 30.51
ADCT 21.08:1 34.92 10
MRVQ 32.00:1 31.36 11

Table 2. Results for encodings of figure :2.

Method | Compression { PSNR(dB) | Figure
IT 104.11:1 34.09
IT 42.08:1 39.03 13
ADCT 75.53:1 33.86
ADCT 43.76:1 38.14 14
MRVQ 32.00:% 36.93 15

age. This will lead to an artificially poorer measured fi-
delity of the encoded images. In areas of DTED where
the data are “properly” digitized, this situation will not
occur. Because not all the data are quantized at a course
resolution, but only most of it, taking advantage of this
quantization is not simple. Although it has not been done
here, before applying lossy compression techniques such as
iterated transforms, ADCT, or VQ, requantization of the
data in such a way that the majority of the datapoints re-
tain their correct values could result in overall improved

performance.

Tests in this section were performed on two 512 x 512
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Figure 8 . Original 5° to 5° 25.6’ E, 61° to 61° 12.8° N, Figure 12 . Original 6° to 6° 25.6’ E, 6
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Figure 10 . The decoded ADCT image of figure 8. Figure 14 . The decoded ADCT image of figure 12.
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Figure 11 . The decoded MRVQ image of figure 8. Figure 15 . The decoded MRVQ image of figure 12.
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sections located in the fiords of Norway. These test images
are shown in figures 8 and 12. Figure 8 covers the section
of the earth from 5° to 5° 25.6° east and 61° to 61° 12.8
north and figure 12 the section from 6° to 6° 25.6" cast
and 61° 12.8’ to 61° 25.6" north. These sections of DTED
were chosen because the topology of the fiords served as a
severe test of the fidelity of the compression methods. A
more thorough study where a broad area of the database
containing a representative amount of flat and mountain-
ous regions would be necessary in determining the com-
pression and fidelity possible for the complete database.

Figures 9, 10, and 11 show gray scale reconstructed
images from typical encodings of the image in figure 8 us-
ing iterated transforms, ADCT, and MRVQ respectively.
Similarly, figures 13, 14, and 15 show reconstructed im-
ages from encodings of the image in figure 12. The fidelity
and compression of these (and other) encodings are sum-
marized in tables 1 and 2.

5. CONCLUSIONS

The compression versus fidelity results indicate that the
iterated transform algorithm performed well when com-
pared with the ADCT and MRVQ methods. Other im-
portant factors to consider when comparing these com-
pression algorithms are access time, decoding time, and
encoding time. Iterated transforms, along with ADCT are
variable bit-rate methods, which would result in slower
access times than the fixed bit rate MRVQ algorithm. It-
erated transform encoding requires an extensive search
procedure, making it slower than MRVQ, which also re-
quires a search, albeit a shorter one. lterated transform
encoding is also slower than ADCT, which requires only a
transformation and quantization. For most applications,
encoding would be a one-time procedure; therefore, en-
coding time would not necessarily be an important con-
cern. If an application required all or a large fraction
of DTED be encoded, then the computer costs for en-
coding become significant. For many applications, the
speed of decoding an image might be a critical require-
ment. The decoding for iterated transforms is a simple
iteration, making it faster than ADCT (where decoding
takes as long as encoding), and slower than MRVQ, which
is essentially a table lookup.
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